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What's next?

Speaker
Specialization
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Experience
Talk time
Questions
Slides
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Grigory Petrov

Generalist

DevRel at Evrone

20 years

30 minutes

At the end of the talk, 15 minutes

@grigoryvp Grigory Petrov
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Let's use social networks to communicate

grigoryvp (@evrone.com
t.me/ grigoryvp
fb.com/ grigoryvp
vk.com/ grigoryvp
github.com/ grigoryvp
twitter.com/ grigoryvp
instagram.com/ grigoryvp

.

i PiterPy
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Some history of network communications
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1990s: CORBA RPC.

B General Inter-0RB Protocol
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Some history of network communications

1990s: CORBA RPC.
e 2000s: SOAP RPC.

<SORP-ENV:Envelope xmlns:SORP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xmlns:xsd=
"http://www.w3.0rg/2001/XMLSchema" xmlns:cwmp="urn:dslforum-org:cwmp-1-0">
<SOAP-ENV:Header>
<cwmp:ID SOAP-ENV:mustUnderstand="1">112</cwmp:ID>
</SORP-ENV:Header>
<SOARP-ENV:Body>
<cwmp:SetParametervValues>
<ParameterList SORP-ENC:arrayType="cwmp:ParameterValueStruct[1l]">
<ParameterValueStruct>
<Name>Device.WiFi.AccessPoint.10001.Enable</Name>
<Value xsi:type="xsd:boolean">1</Value>
</ParameterValueStruct>
</ParameterList>
<ParameterKey>bulk_set 1</ParameterKey>
</cwmp:SetParametervValues>
</SOAP-ENV:Body>
</SOAP—ENV:Envelope4

PiterPy
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Some history of network communications

1990s: CORBA RPC.
2000s: SOAP RPC.
e Year 2000: Roy Fielding REST doctoral dissertation.

Client Connector: (2 0 Client+Cache: ) )  Server Connector ({0 Server+Cache: (30

™ PiterPy
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/evrone.
Some history of network communications

1990s: CORBA RPC.

2000s: SOAP RPC.
Year 2000: Roy Fielding REST doctoral dissertation.

Year 2002: SalesForce, eBay introduce RESTful external APIs.

™ PiterPy
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/evrone.
Some history of network communications

1990s: CORBA RPC.

2000s: SOAP RPC.

Year 2000: Roy Fielding REST doctoral dissertation.

Year 2002: SalesForce, eBay introduce RESTful external APIs.
e Year 2003: Rails with its opinion about REST, JSON and URLs.

™ PiterPy
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Why so popular?

A PiterPy
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/evrone.
Why so popular?

Complexity offload.
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/evrone.
Why so popular?

Complexity offload into:

e URLs.
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/evrone.
Why so popular?

Complexity offload into:

URLs.
e HTTP Headers.
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Why so popular?
Complexity offload into:

URLs.
HTTP Headers.
e JSON payloads.
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Grigory Petrov
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Why so popular?
Complexity offload into:

URLs.
HTTP Headers.
JSON payloads.
e EXxisting browsers and servers.

16 Dbit.ly/pyneten @grigoryvp
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/evrone.
Why so popular?

Roy Fielding, REST author

B A PiterPy
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/evrone.
Why so popular?

Roy Fielding, REST author e Co-authored URI and HTTP.

™ PiterPy
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/evrone.
Why so popular?

Roy Fielding, REST author Co-authored URI and HTTP.
e Battle-tested "Web" since 1994.

™ PiterPy
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/evrone.
Why so popular?
Roy Fielding, REST author Co-authored URI and HTTP.

Battle-tested "Web" since 1994.
e "REST"is "Web".

éﬁ PlterPy
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/evrone.
Why so popular?

Roy Fielding, REST author Co-authored URI and HTTP.
Battle-tested "Web" since 1994.
"REST" is "Web".

e Well suited for CRUD.

| \ PiterPy
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/evrone.
Some history of network communications

1990s: CORBA RPC

2000s: SOAP RPC

Year 2000: Roy Fielding REST doctoral dissertation.

Year 2002: SalesForce, eBay introduce RESTful external APIs.
Year 2003: Rails with it's opinion about REST, JSON and URLSs.

e Year 2004: Gmaiil »
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Evolution from SSR to SPA
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We expect "applications” to be fast
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We expect "application” reaction under 150ms

25 Dbit.ly/pyneten

Neuroanatomy of hitting a baseball

3) Executive control and motor
planning areas take visual information
& make a decision (~150ms)

5) Backup “breaking”
system
(hyperdirect pathway)

2) Visual cortex
processes image from
the eyes (~100ms)*

1) Image of the ball
hits the eye

*All times relative to

when the retina of
4) Muscles start moving (~200ms) the eye “see” the ball

@grigoryvp Grigory Petrov TS
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Network efficiency challenge
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/evrone.
Network efficiency challenge

e TCP 3-way handshake, graceful shutdown and RTT latency.

™ PiterPy
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/evrone.
Network efficiency challenge

TCP 3-way handshake, graceful shutdown and RTT latency.
e HTTPS handshake.

™ PiterPy
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/evrone.
Network efficiency challenge

TCP 3-way handshake, graceful shutdown and RTT latency.
HTTPS handshake.
e 6-connection limit.
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/evrone.
Network efficiency challenge

TCP 3-way handshake, graceful shutdown and RTT latency.
HTTPS handshake.

6-connection limit.
e Underfetching.
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/evrone.
Network efficiency challenge

TCP 3-way handshake, graceful shutdown and RTT latency.
HTTPS handshake.

6-connection limit.
Underfetching.
e Over-fetching and internet speed.
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/evrone.
Network efficiency challenge

TCP 3-way handshake, graceful shutdown and RTT latency.
HTTPS handshake.

6-connection limit.

Underfetching.

Over-fetching and internet speed.
e Payload size.

™ PiterPy
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REST evolution to answer the efficiency challenge

{ REST }

& PiterPy
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/evrone.
REST evolution to answer the efficiency challenge

e May 2013, "JSON:API" extracted from Ember.js

34 Dbit.ly/pyneten @grigoryvp Grigory Petrov



/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
e Compound documents.

5ET https://api.example.com/posts?include=author
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/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
e Sparse fieldsets.

Is[posts]=message, image
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/evrone.

REST evolution to answer the efficiency challenge
May 2013, "JSON:API" extracted from Ember.js
Compound documents.

Sparse fieldsets.
e And really bad naming.

™ PiterPy
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/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
Sparse fieldsets.

And really bad naming:
o "json api" is same as "web api" or "RESTful api".

™ PiterPy
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/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
Sparse fieldsets.

And really bad naming:
"json api" is same as "web api" or "RESTful api".

o "jsonapi" (website).

™ PiterPy
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/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
Sparse fieldsets.

And really bad naming:
"json api" is same as "web api" or "RESTful api".

"jsonapi" (website).
o "json-api" (github).

™ PiterPy
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/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
Sparse fieldsets.

And really bad naming:
"json api" is same as "web api" or "RESTful api".

"jsonapi" (website).
o "json-api" (github).

& PiterPy
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/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
Sparse fieldsets.
And really bad naming.
e Also, not to confuse with:

™ PiterPy
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/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
Sparse fieldsets.
And really bad naming.
Also, not to confuse with:
o OpenAPIl and RAML API definition languages.

™ PiterPy
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/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
Sparse fieldsets.
And really bad naming.
Also, not to confuse with:
OpenAPIl and RAML API definition languages.
o "JSON Schema" data definition language.

'® PiterPy
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REST evolution to answer the efficiency challenge
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/evrone.
REST evolution to answer the efficiency challenge

e Django Rest Framework with drf_yasg.

R PiterPy
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/evrone.
REST evolution to answer the efficiency challenge

Django Rest Framework with drf_yasg.
e Connexion: Flask, can consume "swagger.yaml"
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/evrone.
REST evolution to answer the efficiency challenge

Django Rest Framework with drf_yasg.
Connexion: Flask, can consume "swagger.yaml"
e Falcon: threads, native REST support.
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/evrone.
REST evolution to answer the efficiency challenge

Django Rest Framework with drf_yasg.
Connexion: Flask, can consume "swagger.yaml"
Falcon: threads, native REST support.

e Eve: specifically for REST.
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/evrone.
REST evolution to answer the efficiency challenge

Django Rest Framework with drf_yasg.
Connexion: Flask, can consume "swagger.yaml"
Falcon: threads, native REST support.
Eve: specifically for REST.

e aiohttp-apispec
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/evrone.
REST evolution to answer the efficiency challenge

Django Rest Framework with drf_yasg.
Connexion: Flask, can consume "swagger.yaml"
Falcon: threads, native REST support.
Eve: specifically for REST.
aiohttp-apispec

e ... and much more.

51 Dbit.ly/pyneten @grigoryvp Grigory Petrov
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Other challengers: GraphQL

™ PiterPy
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/evrone.
Other challengers: GraphQL

™ PiterPy
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/evrone.
Other challengers: GraphQL

e Publicly released by Facebook in 2015.
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/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
e Based on RESTish Graph APl and FQL experience.
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/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
e Trades REST "uniform interface" for transfer efficiency.
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/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.

e At a cost.
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/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.

At a cost:
o N+1 issue.

™ PiterPy
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/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.

At a cost:
N+1 issue.
o No namespaces, scheme is flat.

™ PiterPy
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/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.
At a cost:

N+1 issue.

No namespaces, scheme is flat.

o Cache.

™ PiterPy
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/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.
At a cost:

N+1 issue.

No namespaces, scheme is flat.

o Cache, auth.

™ PiterPy
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/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.

At a cost:
N+1 issue.
No namespaces, scheme is flat.
o Cache, auth, pagination.

™ PiterPy
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/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.

At a cost:
N+1 issue.
No namespaces, scheme is flat.
o Cache, auth, pagination, duplicates.

™ PiterPy
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Other challengers: GraphQL

64

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.
At a cost:
N+1 issue.
No namespaces, scheme is flat.
o Cache, auth, pagination, duplicates, binary.

bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.

™ PiterPy




Other challengers: GraphQL

Publicly released by Facebook in 2015.

Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.
At a cost:

N+1 issue.
No namespaces, scheme is flat.

o Cache, auth, pagination, duplicates, binary, recursion.

65 Dbit.ly/pyneten @grigoryvp Grigory Petrov
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Other challengers: GraphQL

Rl e p
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/evrone.
Other challengers: GraphQL

e Graphene with graphene-django.
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Other challengers: GraphQL

Graphene with graphene-django.
e Ariadne, Strawberry, Tartiflette, tartiflette-aiohttp.
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Other challengers: gRPC
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/evrone.
Other challengers: gRPC

e Publicly released by Google in 2015.
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/evrone.
Other challengers: gRPC

Publicly released by Google in 2015.
e Trades REST "resources" for transfer efficiency.

™ PiterPy
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/evrone.
Other challengers: gRPC

Publicly released by Google in 2015.
Trades REST "resources" for transfer efficiency.
e Fast, low-level, backend-to-backend.
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Other challengers: gRPC

o[

73 Dbit.ly/pyneten @grigoryvp Grigory Petrov



/evrone.
Other challengers: gRPC

e Official grpcio-tools generator from Google.
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/evrone.
Other challengers: gRPC

Official grpcio-tools generator from Google.
e mypy-protobuf from Dropbox.
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Other challengers: HTTP/2

HTTP/2
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/evrone.
Other challengers: HTTP/2

e Spec published in 2015.
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/evrone.
Other challengers: HTTP/2

Spec published in 2015.
e Fixes TCP and HTTP issues.
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/evrone.
Other challengers: HTTP/2

Spec published in 2015.
Fixes TCP and HTTP issues.
e Brings back REST!

™ PiterPy

79 Dbit.ly/pyneten @grigoryvp Grigory Petrov



/evrone.
Other challengers: HTTP/2

AN
-
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/evrone.
Other challengers: HTTP/2

e Hypercorn with ASGI for Quart.
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/evrone.
Other challengers: HTTP/2

Hypercorn with ASGI for Quart.
e Hyper-h2 or httpx for HTTP/2 clients (alpha versions!).
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/evrone.
Other challengers: HTTP/2

Hypercorn with ASGI for Quart.
Hyper-h2 or httpx for HTTP/2 clients (alpha versions!).
e Django-channels, Sanic, Twisted.
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/evrone.
Other challengers: HTTP/2

Hypercorn with ASGI for Quart.
Hyper-h2 or httpx for HTTP/2 clients (alpha versions!).
Django-channels, Sanic, Twisted.

e Orjust use the HTTP/2 proxy.
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Gonelgsier What | want to discuss at this conference

™ PiterPy
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/evrone.
Gonelgsier What | want to discuss at this conference

e GraphQL and JSON:API are net hacks.
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/evrone.
Gonelgsier What | want to discuss at this conference

GraphQL and JSON:API are net hacks.
o Can be replaced with HTTP/2 for some use cases.

™ PiterPy
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/evrone.
Gonelgsier What | want to discuss at this conference

GraphQL and JSON:API are net hacks.
Can be replaced with HTTP/2 for some use cases.
e REST is best with CRUD, but not limited to it.

™ PiterPy
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/evrone.
Gonelgsier What | want to discuss at this conference

GraphQL and JSON:API are net hacks.
Can be replaced with HTTP/2 for some use cases.
REST is best with CRUD, but not limited to it.
e We can mix REST, RPC, gRPC, GraphQL, AMQP.

™ PiterPy
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/evrone.
Gonelgsier What | want to discuss at this conference

GraphQL and JSON:API are net hacks.
Can be replaced with HTTP/2 for some use cases.
REST is best with CRUD, but not limited to it.
We can mix REST, RPC, gRPC, GraphQL, AMQP.
e Existing environment and business needs matters.

'® PiterPy
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The End

Questions?

N
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