. N TN NN
P PiterPy AN TN NN

TECHNICAL CONFERENCE FOR
HARDCORE PYTHON DEVELOPERS

SAINT PETERSBURG
w 2019 NOVEMBER 1

/evrone.

Python network workflow
REST, JSON, GraphQL or gRPC?

Grigory Petrov

What's next?

Speaker
Specialization
Role
Experience
Talk time
Questions
Slides

.

3 bit.ly/pyneten

Grigory Petrov

Generalist

DevRel at Evrone

20 years

30 minutes

At the end of the talk, 15 minutes

@grigoryvp Grigory Petrov

/evrone.

PiterPy

/evrone.
Let's use social networks to communicate

grigoryvp (@evrone.com
t.me/ grigoryvp
fb.com/ grigoryvp
vk.com/ grigoryvp
github.com/ grigoryvp
twitter.com/ grigoryvp
instagram.com/ grigoryvp

.

i PiterPy
4 bit.ly/pyneten @grigoryvp Grigory Petrov |

/evrone.
Some history of network communications

5 bit.ly/pyneten @grigoryvp Grigory Petrov

Some history of network communications

6

1990s: CORBA RPC.

B General Inter-0RB Protocol
Magic rumber: GIOP
Version: 1.0
Byte ordering: big-endian
Message tupe: Request
Message size: 80
B General Inter-ORB Protocol Request
@ ServiceContextList
Request id: 2
Response expected: 1
Object Key length: 28

Operation length: 4

Operation: get

Requesting Principal Length: 0
B Server Dissector Using GIOP API

Object Key: StandardinplName/. . $01G2,..+

m=13

()

0000 00 00 00 00 00 00 00 00 00 00 00 00
0010 00 S0 8a 54 40 00 40 06 b2 11 7f 00
0020 00 01 05 45 05 24 47 38 43 36 46 c5
10030 7f FF 74 bd 00 00 01 01 08 Oa 00 Of
10040 c8 3e 47 49 4F 50 01 00 00 00 00 00
0050 00 01 00 00 00 01 00 00 00 Oc 00 43
0080 00 01 00 01 01 03 00 00 00 02 01 00
0070 00 1c 53 74 61 Be 64 61 72 64 49 6d
0080 6d 65 2f 00 10 24 30 21 40 32 11 01
0030 00 04 67 65 74 00 00 00 00 00 FNJEHY

rE3S®383

848888835
ngOOOD—'OO

8338%585%88
Sw

ERP8B2EPEE

%

Filter:| |giop

/] Rese]

bit.ly/pyneten

@grigoryvp

Grigory Petrov

/evrone.

PiterPy

/evrone.
Some history of network communications

1990s: CORBA RPC.
e 2000s: SOAP RPC.

<SORP-ENV:Envelope xmlns:SORP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xmlns:xsd=
"http://www.w3.0rg/2001/XMLSchema" xmlns:cwmp="urn:dslforum-org:cwmp-1-0">
<SOAP-ENV:Header>
<cwmp:ID SOAP-ENV:mustUnderstand="1">112</cwmp:ID>
</SORP-ENV:Header>
<SOARP-ENV:Body>
<cwmp:SetParametervValues>
<ParameterList SORP-ENC:arrayType="cwmp:ParameterValueStruct[1l]">
<ParameterValueStruct>
<Name>Device.WiFi.AccessPoint.10001.Enable</Name>
<Value xsi:type="xsd:boolean">1</Value>
</ParameterValueStruct>
</ParameterList>
<ParameterKey>bulk_set 1</ParameterKey>
</cwmp:SetParametervValues>
</SOAP-ENV:Body>
</SOAP—ENV:Envelope4

PiterPy

7 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Some history of network communications

1990s: CORBA RPC.
2000s: SOAP RPC.
e Year 2000: Roy Fielding REST doctoral dissertation.

Client Connector: (2 0 Client+Cache:)) Server Connector ({0 Server+Cache: (30

™ PiterPy

8 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Some history of network communications

1990s: CORBA RPC.

2000s: SOAP RPC.
Year 2000: Roy Fielding REST doctoral dissertation.

Year 2002: SalesForce, eBay introduce RESTful external APIs.

™ PiterPy

9 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Some history of network communications

1990s: CORBA RPC.

2000s: SOAP RPC.

Year 2000: Roy Fielding REST doctoral dissertation.

Year 2002: SalesForce, eBay introduce RESTful external APIs.
e Year 2003: Rails with its opinion about REST, JSON and URLs.

™ PiterPy

10 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Why so popular?

A PiterPy
11 bit.ly/pyneten @grigoryvp Grigory Petrov o1

/evrone.
Why so popular?

Complexity offload.

12 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Why so popular?

Complexity offload into:

e URLs.

13 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Why so popular?

Complexity offload into:

URLs.
e HTTP Headers.

14 bit.ly/pyneten @grigoryvp Grigory Petrov

Why so popular?
Complexity offload into:

URLs.
HTTP Headers.
e JSON payloads.

15 Dbit.ly/pyneten @grigoryvp

Grigory Petrov

/evrone.

Why so popular?
Complexity offload into:

URLs.
HTTP Headers.
JSON payloads.
e EXxisting browsers and servers.

16 Dbit.ly/pyneten @grigoryvp

Grigory Petrov

/evrone.

™ PiterPy

/evrone.
Why so popular?

Roy Fielding, REST author

B A PiterPy
17 Dbit.ly/pyneten @grigoryvp Grigory Petrov o1

/evrone.
Why so popular?

Roy Fielding, REST author e Co-authored URI and HTTP.

™ PiterPy

18 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Why so popular?

Roy Fielding, REST author Co-authored URI and HTTP.
e Battle-tested "Web" since 1994.

™ PiterPy

19 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Why so popular?
Roy Fielding, REST author Co-authored URI and HTTP.

Battle-tested "Web" since 1994.
e "REST"is "Web".

éﬁ PlterPy

20 bit.ly/pyneten @grigoryvp Grigory Petrov ey

/evrone.
Why so popular?

Roy Fielding, REST author Co-authored URI and HTTP.
Battle-tested "Web" since 1994.
"REST" is "Web".

e Well suited for CRUD.

| \ PiterPy
21 Dbit.ly/pyneten @grigoryvp Grigory Petrov Eme:

/evrone.
Some history of network communications

1990s: CORBA RPC

2000s: SOAP RPC

Year 2000: Roy Fielding REST doctoral dissertation.

Year 2002: SalesForce, eBay introduce RESTful external APIs.
Year 2003: Rails with it's opinion about REST, JSON and URLSs.

e Year 2004: Gmaiil »

22 bit.ly/pyneten @grigoryvp Grigory Petrov

™ PiterPy

Evolution from SSR to SPA

23 bit.ly/pyneten @grigoryvp Grigory reurov

We expect "applications” to be fast

24 Dit.ly/pyneten

| > e

|| Navigater “inko " bemtogram N+ |

,,,,,

GEer CRfeS £ D[
PPN ERN N T

.

g
e 0

Q5
3

[T |

»

@grigoryvp Grigory Petrov

/evrone.

/evrone.

We expect "application” reaction under 150ms

25 Dbit.ly/pyneten

Neuroanatomy of hitting a baseball

3) Executive control and motor
planning areas take visual information
& make a decision (~150ms)

5) Backup “breaking”
system
(hyperdirect pathway)

2) Visual cortex
processes image from
the eyes (~100ms)*

1) Image of the ball
hits the eye

*All times relative to

when the retina of
4) Muscles start moving (~200ms) the eye “see” the ball

@grigoryvp Grigory Petrov TS

PiterPy

/evrone.
Network efficiency challenge

26 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Network efficiency challenge

e TCP 3-way handshake, graceful shutdown and RTT latency.

™ PiterPy

27 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Network efficiency challenge

TCP 3-way handshake, graceful shutdown and RTT latency.
e HTTPS handshake.

™ PiterPy

28 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Network efficiency challenge

TCP 3-way handshake, graceful shutdown and RTT latency.
HTTPS handshake.
e 6-connection limit.

29 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Network efficiency challenge

TCP 3-way handshake, graceful shutdown and RTT latency.
HTTPS handshake.

6-connection limit.
e Underfetching.

30 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Network efficiency challenge

TCP 3-way handshake, graceful shutdown and RTT latency.
HTTPS handshake.

6-connection limit.
Underfetching.
e Over-fetching and internet speed.

31 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Network efficiency challenge

TCP 3-way handshake, graceful shutdown and RTT latency.
HTTPS handshake.

6-connection limit.

Underfetching.

Over-fetching and internet speed.
e Payload size.

™ PiterPy

32 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
REST evolution to answer the efficiency challenge

{ REST }

& PiterPy
33 Dbit.ly/pyneten @grigoryvp Grigory Petrov |

/evrone.
REST evolution to answer the efficiency challenge

e May 2013, "JSON:API" extracted from Ember.js

34 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
e Compound documents.

5ET https://api.example.com/posts?include=author

35 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
e Sparse fieldsets.

Is[posts]=message, image

36 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.

REST evolution to answer the efficiency challenge
May 2013, "JSON:API" extracted from Ember.js
Compound documents.

Sparse fieldsets.
e And really bad naming.

™ PiterPy

37 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
Sparse fieldsets.

And really bad naming:
o "json api" is same as "web api" or "RESTful api".

™ PiterPy

38 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
Sparse fieldsets.

And really bad naming:
"json api" is same as "web api" or "RESTful api".

o "jsonapi" (website).

™ PiterPy

39 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
Sparse fieldsets.

And really bad naming:
"json api" is same as "web api" or "RESTful api".

"jsonapi" (website).
o "json-api" (github).

™ PiterPy

40 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
Sparse fieldsets.

And really bad naming:
"json api" is same as "web api" or "RESTful api".

"jsonapi" (website).
o "json-api" (github).

& PiterPy
41 bit.ly/pyneten @grigoryvp Grigory Petrov '

/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
Sparse fieldsets.
And really bad naming.
e Also, not to confuse with:

™ PiterPy

42 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
Sparse fieldsets.
And really bad naming.
Also, not to confuse with:
o OpenAPIl and RAML API definition languages.

™ PiterPy

43 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
REST evolution to answer the efficiency challenge

May 2013, "JSON:API" extracted from Ember.js
Compound documents.
Sparse fieldsets.
And really bad naming.
Also, not to confuse with:
OpenAPIl and RAML API definition languages.
o "JSON Schema" data definition language.

'® PiterPy
44 Dbit.ly/pyneten @grigoryvp Grigory Petrov e i

/evrone.
REST evolution to answer the efficiency challenge

45 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
REST evolution to answer the efficiency challenge

e Django Rest Framework with drf_yasg.

R PiterPy

46 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
REST evolution to answer the efficiency challenge

Django Rest Framework with drf_yasg.
e Connexion: Flask, can consume "swagger.yaml"

47 bit.ly/pyneten @grigoryvp Grigory Petrov |

/evrone.
REST evolution to answer the efficiency challenge

Django Rest Framework with drf_yasg.
Connexion: Flask, can consume "swagger.yaml"
e Falcon: threads, native REST support.

48 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
REST evolution to answer the efficiency challenge

Django Rest Framework with drf_yasg.
Connexion: Flask, can consume "swagger.yaml"
Falcon: threads, native REST support.

e Eve: specifically for REST.

49 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
REST evolution to answer the efficiency challenge

Django Rest Framework with drf_yasg.
Connexion: Flask, can consume "swagger.yaml"
Falcon: threads, native REST support.
Eve: specifically for REST.

e aiohttp-apispec

50 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
REST evolution to answer the efficiency challenge

Django Rest Framework with drf_yasg.
Connexion: Flask, can consume "swagger.yaml"
Falcon: threads, native REST support.
Eve: specifically for REST.
aiohttp-apispec

e ... and much more.

51 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: GraphQL

™ PiterPy

52 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: GraphQL

™ PiterPy

53 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: GraphQL

e Publicly released by Facebook in 2015.

94 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
e Based on RESTish Graph APl and FQL experience.

55 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
e Trades REST "uniform interface" for transfer efficiency.

56 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.

e At a cost.

57 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.

At a cost:
o N+1 issue.

™ PiterPy

58 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.

At a cost:
N+1 issue.
o No namespaces, scheme is flat.

™ PiterPy

99 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.
At a cost:

N+1 issue.

No namespaces, scheme is flat.

o Cache.

™ PiterPy

60 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.
At a cost:

N+1 issue.

No namespaces, scheme is flat.

o Cache, auth.

™ PiterPy

61 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.

At a cost:
N+1 issue.
No namespaces, scheme is flat.
o Cache, auth, pagination.

™ PiterPy

62 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: GraphQL

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.

At a cost:
N+1 issue.
No namespaces, scheme is flat.
o Cache, auth, pagination, duplicates.

™ PiterPy

63 Dbit.ly/pyneten @grigoryvp Grigory Petrov

Other challengers: GraphQL

64

Publicly released by Facebook in 2015.
Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.
At a cost:
N+1 issue.
No namespaces, scheme is flat.
o Cache, auth, pagination, duplicates, binary.

bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.

™ PiterPy

Other challengers: GraphQL

Publicly released by Facebook in 2015.

Based on RESTish Graph API and FQL experience.
Trades REST "uniform interface" for transfer efficiency.
At a cost:

N+1 issue.
No namespaces, scheme is flat.

o Cache, auth, pagination, duplicates, binary, recursion.

65 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.

™ PiterPy

/evrone.
Other challengers: GraphQL

Rl e p

66 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: GraphQL

e Graphene with graphene-django.

67 Dbit.ly/pyneten @grigoryvp Grigory Petrov |

/evrone.
Other challengers: GraphQL

Graphene with graphene-django.
e Ariadne, Strawberry, Tartiflette, tartiflette-aiohttp.

68 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.

Other challengers: gRPC

69 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: gRPC

e Publicly released by Google in 2015.

70 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: gRPC

Publicly released by Google in 2015.
e Trades REST "resources" for transfer efficiency.

™ PiterPy

71 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: gRPC

Publicly released by Google in 2015.
Trades REST "resources" for transfer efficiency.
e Fast, low-level, backend-to-backend.

72 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: gRPC

o[

73 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: gRPC

e Official grpcio-tools generator from Google.

74 bit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: gRPC

Official grpcio-tools generator from Google.
e mypy-protobuf from Dropbox.

75 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: HTTP/2

HTTP/2

76 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: HTTP/2

e Spec published in 2015.

77 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: HTTP/2

Spec published in 2015.
e Fixes TCP and HTTP issues.

78 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: HTTP/2

Spec published in 2015.
Fixes TCP and HTTP issues.
e Brings back REST!

™ PiterPy

79 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: HTTP/2

AN
-

80 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: HTTP/2

e Hypercorn with ASGI for Quart.

81 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: HTTP/2

Hypercorn with ASGI for Quart.
e Hyper-h2 or httpx for HTTP/2 clients (alpha versions!).

82 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: HTTP/2

Hypercorn with ASGI for Quart.
Hyper-h2 or httpx for HTTP/2 clients (alpha versions!).
e Django-channels, Sanic, Twisted.

83 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Other challengers: HTTP/2

Hypercorn with ASGI for Quart.
Hyper-h2 or httpx for HTTP/2 clients (alpha versions!).
Django-channels, Sanic, Twisted.

e Orjust use the HTTP/2 proxy.

84 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Gonelgsier What | want to discuss at this conference

™ PiterPy

85 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Gonelgsier What | want to discuss at this conference

e GraphQL and JSON:API are net hacks.

86 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Gonelgsier What | want to discuss at this conference

GraphQL and JSON:API are net hacks.
o Can be replaced with HTTP/2 for some use cases.

™ PiterPy

87 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Gonelgsier What | want to discuss at this conference

GraphQL and JSON:API are net hacks.
Can be replaced with HTTP/2 for some use cases.
e REST is best with CRUD, but not limited to it.

™ PiterPy

88 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Gonelgsier What | want to discuss at this conference

GraphQL and JSON:API are net hacks.
Can be replaced with HTTP/2 for some use cases.
REST is best with CRUD, but not limited to it.
e We can mix REST, RPC, gRPC, GraphQL, AMQP.

™ PiterPy

89 Dbit.ly/pyneten @grigoryvp Grigory Petrov

/evrone.
Gonelgsier What | want to discuss at this conference

GraphQL and JSON:API are net hacks.
Can be replaced with HTTP/2 for some use cases.
REST is best with CRUD, but not limited to it.
We can mix REST, RPC, gRPC, GraphQL, AMQP.
e Existing environment and business needs matters.

'® PiterPy
90 bit.ly/pyneten @grigoryvp Grigory Petrov e i

/evrone.

The End

Questions?

N
91 Dbit.ly/pyneten @grigoryvp Grigory Petrov

