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About me
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● Kirill Vasin
● Data scientist at SEMrush

● Previously worked as a freelance 
python-dev and data scientist
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Awards received in 2018-2019:

SEMrush - online Marketing Toolkit
for digital-marketing professionals

Founded
in 2008

4,000,000+
users

700+
employees

6 offices                                      
on two continents:

Saint-Petersburg (Russia),

Prague (Czech Republic),
Limassol (Cyprus),
Philadelphia,
Boston,
Dallas (USA)   

About SEMrush



💡
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Structure

⚙
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10x engineer

6

● Full-stack
● Converts "thought" into 

"code" in their mind
● Knows the entire production 

codebase
● Creates an ideal code from 

scratch



10x engineer
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● Doesn’t use documentation 
or google things

● Laptop screen background 
color is black

● Keyboard keys such as i, f, x 
are usually worn out



10x engineer
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● Hates meetings
● Attends the office irregularly
● Poor mentor

❌ Knowledge share
❌ Ideas share
❌ Code maintainability
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Good software projects today

● Usually in one repo
● Usually well-structured
● Use VCS
● Have well-defined code style 

conventions
● Use testing
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ML project surrounded by software projects

Most of ML Projects today
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Software Dev Process

Understand 
business needs MVP design

Prototype

ImplementTest & Integrate

Monitor
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ML Process

Understand 
business needs MVP design

Prototype

ImplementTest & Integrate

Monitor Prototype
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ML Process: Prototyping

Get & 
Understand data

Evaluate Model Prepare Data

Train Model



= (Dataset * Data Pipeline * Model)

Experiments in ML
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Experiment -> Metric
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That creates some issues 

Collaboration 
issues

Datasets

Pipelines

Metrics

Lots of 
experiments

Reproducibility 
issues

Experimentation 
speed issues

Large Files + git ≠ ❤

We want to be 100% sure how 
to reproduce our results

Save and combine results 
from teammates

Tens of features, thousands of 
hyperparameters
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Let’s try to solve them

Collaboration

Speed

Reproducibility



Virtualenv and/or Docker
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● Create isolated environments

As a result:
- Portability
- Easy project dependency tracking
- Update python packages without risk of 

breaking old projects

Reproducibility
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Pre-commit hooks

● Runs scripts before each commit

As a result, you and your teammates 
follow the same code style agreement

Usually I use the following hooks:
● pylint
● flake8
● check-added-large-files

Collaboration
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Cookiecutter

$ django-admin startproject mysite
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Cookiecutter

$ cookiecutter my_awesome_template_folder



Creates custom project templates.

As a result:
- Navigation inside your projects become 

easier
- New projects are created with one command
- Simple onboarding
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Cookiecutter
Collaboration Speed



● Makes a library out of your project code which you 
can use inside your jupyter notebooks

● Automatically creates a documentation for your 
projects

Good starting point for almost any ML project
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Cookiecutter-data-science
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Jupyter notebooks
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Jupyter notebooks

❌ No version control support
❌ Non-linear workflow
❌ No modularity
❌ Hard to test, read and reuse

❤ Perfect for fast prototyping
❤ Ideal for EDA and visualizations
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Jupyter notebooks

● Fast prototyping
● EDA and visualisations

Speed

How to use:
● Name conventions 

(1.0-author_name-eda.ipynb)
● Move good code to the .py files

As a result:
- notebooks are easier to read
- code becomes shareable
- reports creation is faster
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Optuna
● Bayesian hyperparameter optimization
● Pruning of unpromising trials

As a result:
- Hyperparameter tuning takes less time
- Unified approach to hyperparameter tuning

Collaboration Speed
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Optuna
● SQL Backend

As a result:
- Parallel experiments on different machines
- Results kept in a database in a unified fashion

Collaboration Speed
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DVC

● Provides version control after data, pipelines 
and models

● Supports S3, Azure, GCP, SSH as a data 
storage 

● Caches results of the pipeline stages
● Language agnostic

As a result:
- Easy rollbacks and branching
- Single storage for all data
- No recalculations
- Incremental development.

Collaboration SpeedReproducibility
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● Reproducibility
○ Portable environment (virtualenv)
○ VCSs for data, pipelines and models (dvc)

● Collaboration
○ VCSs for code, data, pipelines and models (git and dvc)
○ Standardized templates (cookiecutter)
○ Code quality standards (pre-commit)
○ Shared RDB backend(optuna)

● Experimentation speed
○ Cache pipeline steps (dvc)
○ Smart hyperparameter optimization (optuna)
○ Fast prototyping (jupyter notebooks).

Pipeline tools overview
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Good software and ML projects today

● Usually in one repo
● Usually well-structured
● Use VCS
● Have well-defined code style 

conventions
● Use testing
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10 minutes after learning about this pipeline
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10 hours after learning about this pipeline
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My working process
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My working process

Get & 
Understand data

Evaluate Model Prepare Data

Train Model

Repo & 
Environment

Implement & 
Integrate



Repo & environment
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$ sudo apt install cookiecutter
$ cookiecutter cookiecutter_repo

$ make initial_setup

Repo & 
Environment



What “$ make initial_setup” does
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- Sets up git
- Creates a fresh virtualenv for a project
- Installs and sets up dvc
- Installs pre-commit
- Installs requirements.txt

Automate setup with Makefile 💡🐱
https://github.com/vasinkd/cookiecutter-data-science

Repo & 
Environment



EDA
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Get & 
Understand data



     python my_study/data/train_test_val_split.py
     my_study/data/train_test_val_split.ini
     data/raw/raw_data.tsv  data/interim/dataset.pkl

     -d my_study/data/train_test_val_split.py
     -d my_study/data/train_test_val_split.ini
     -d data/raw/raw_data.tsv
     -o data/interim/dataset.pkl

$   dvc run my_study/pipelines/split_data.dvc

Model input generation
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Prepare Data



Inside split_data.dvc
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- deps
- outs
- cmd
- …

● A lot of repeats
● No deterministic order

Prepare Data



DVC tip #1
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● Automate dvc-stage creation 💡🐱

f(stage_name, py_file, inps, outs, ...) -> “dvc_command”
f2(dvc_command) -> $ cd base_dir; dvc_command

As a result:
● Less typos
● Simpler maintenance

Prepare Data



DVC’s dirty secret
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- No recalculations
- Incremental development

Writes results of each stage on 
disk and calculates hash

Problem:
● Not suitable for production

○ Build manually?

Prepare Data



DVC tip #2
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● Use one featurize.py with different config files 💡🐱

Prepare Data

featurize.py



DVC tip #2

47

● Use one featurize.py with different config files 💡🐱

Prepare Data

featurize.py
Transformer 
name&params

Input file name

Columns list



DVC tip #3
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● Create InferenceStage objects as an extra output 💡🐱

Prepare Data

Input 
info

Inference 
Stage



Raw data

Rationale

49

Prepare Data

Model Input

In memory



Train a family of models
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● Study
○ Has a name
○ Has user-defined attributes

Train Model

study_id study
name

best trial id important 
notes

1 AAAA 252 Felt hungry. 
Ordered a 
pizza
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Situation #1

● You want to stop your machine after 50% of the training

Train Model
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Training tip #1

● Catch SigInt in your train.py 💡🐱

Train Model
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Situation #2

● You want to resume a stopped 
training process

Train Model

Problem:
● How to choose a study name?

○ Unique name for the each 
new experiment

○ Name in config?
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Training tip #2

● Use a hash of all input files as an experiment 
name💡🐱

Train Model
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Situation #2.1

● You want to resume a stopped 
training process

Train Model

Problems:
● How to keep the best model?

○ DVC removes outputs before 
reproducing

○ Recalculate?
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Training tip #2.1

● Set --outs-persist as an output type for a model 
object💡🐱

Train Model

The best model



study
name

metric

AAAA 0.99

BBBB 0.98
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Situation #3

● You want to checkout to the point of the most 
successful experiment

Train Model

$ git checkout where to?
$ dvc checkout
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Situation #3
Train Model

commit hash

experiment 
name

experiment 
result

● You want to checkout to the point of the most 
successful experiment
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Training tip #3

● Tag completed experiments with a 
name of an experiment💡🐱

$ git tag -a exp_name -m “exp_name”

Train Model

● Bonus: 
$ dvc gc --all-tags

commit
hash

exp_name
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Situation #4

● You want to use the whole pipeline right after training

Train Model



InferenceStage N

InferenceStage 2
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Training tip #4

● Create a predictor object using the best model and 
Inference stages 💡

Train Model

InferenceStage 1

Predictor



Regularization

???
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Situation #5

● You doubt how to choose the best pipeline

Train Model

Cross-validation

???
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Training tip #5

● Measure inference time for a sample and store it as a 
study attribute💡

Train Model

M
em

ory usage

Inference time



Implement & Integrate
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● Write a manager 💡

Implement & 
Integrate



Share knowledge about this pipeline
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Additional resources

● #ml_pipeline channel in ODS slack is a fountain of knowledge (ods.ai)
● Check out DVC promo video: you’ll love it (dvc.org)
● Git LFS vs DVC (tiny.cc/git_lfs)
● “I don't like notebooks” - Joel Grus (youtube)

● Tweet from Shekhar Kirani : 
https://twitter.com/skirani/status/1149302828420067328

● Tweet from Andrew Ng : 
https://twitter.com/andrewyng/status/1080886439380869122

● My cookiecutter template: 
https://github.com/vasinkd/cookiecutter-data-science

https://ods.ai/
https://dvc.org/
https://tiny.cc/git_lfs
https://www.youtube.com/watch?v=7jiPeIFXb6U
https://twitter.com/skirani/status/1149302828420067328
https://twitter.com/andrewyng/status/1080886439380869122
https://github.com/vasinkd/cookiecutter-data-science
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Kirill Vasin

vasin.kd@gmail.com

Contacts

@vasinkd

@vasinkd (ODS Slack)


