
ML Pipeline

Kirill Vasin

2019

About me

2

● Kirill Vasin
● Data scientist at SEMrush

● Previously worked as a freelance
python-dev and data scientist

3

Awards received in 2018-2019:

SEMrush - online Marketing Toolkit
for digital-marketing professionals

Founded
in 2008

4,000,000+
users

700+
employees

6 offices
on two continents:

Saint-Petersburg (Russia),

Prague (Czech Republic),
Limassol (Cyprus),
Philadelphia,
Boston,
Dallas (USA)

About SEMrush

💡
4

Structure

⚙

5

10x engineer

6

● Full-stack
● Converts "thought" into

"code" in their mind
● Knows the entire production

codebase
● Creates an ideal code from

scratch

10x engineer

7

● Doesn’t use documentation
or google things

● Laptop screen background
color is black

● Keyboard keys such as i, f, x
are usually worn out

10x engineer

8

● Hates meetings
● Attends the office irregularly
● Poor mentor

❌ Knowledge share
❌ Ideas share
❌ Code maintainability

9

Good software projects today

● Usually in one repo
● Usually well-structured
● Use VCS
● Have well-defined code style

conventions
● Use testing

10

ML project surrounded by software projects

Most of ML Projects today

11

12

13

Software Dev Process

Understand
business needs MVP design

Prototype

ImplementTest & Integrate

Monitor

14

ML Process

Understand
business needs MVP design

Prototype

ImplementTest & Integrate

Monitor Prototype

15

ML Process: Prototyping

Get &
Understand data

Evaluate Model Prepare Data

Train Model

= (Dataset * Data Pipeline * Model)

Experiments in ML

16

Experiment -> Metric

17

That creates some issues

Collaboration
issues

Datasets

Pipelines

Metrics

Lots of
experiments

Reproducibility
issues

Experimentation
speed issues

Large Files + git ≠ ❤

We want to be 100% sure how
to reproduce our results

Save and combine results
from teammates

Tens of features, thousands of
hyperparameters

18

Let’s try to solve them

Collaboration

Speed

Reproducibility

Virtualenv and/or Docker

19

● Create isolated environments

As a result:
- Portability
- Easy project dependency tracking
- Update python packages without risk of

breaking old projects

Reproducibility

20

Pre-commit hooks

● Runs scripts before each commit

As a result, you and your teammates
follow the same code style agreement

Usually I use the following hooks:
● pylint
● flake8
● check-added-large-files

Collaboration

21

Cookiecutter

$ django-admin startproject mysite

22

Cookiecutter

$ cookiecutter my_awesome_template_folder

Creates custom project templates.

As a result:
- Navigation inside your projects become

easier
- New projects are created with one command
- Simple onboarding

23

Cookiecutter
Collaboration Speed

● Makes a library out of your project code which you
can use inside your jupyter notebooks

● Automatically creates a documentation for your
projects

Good starting point for almost any ML project

24

Cookiecutter-data-science

25

Jupyter notebooks

26

Jupyter notebooks

❌ No version control support
❌ Non-linear workflow
❌ No modularity
❌ Hard to test, read and reuse

❤ Perfect for fast prototyping
❤ Ideal for EDA and visualizations

27

Jupyter notebooks

● Fast prototyping
● EDA and visualisations

Speed

How to use:
● Name conventions

(1.0-author_name-eda.ipynb)
● Move good code to the .py files

As a result:
- notebooks are easier to read
- code becomes shareable
- reports creation is faster

28

Optuna
● Bayesian hyperparameter optimization
● Pruning of unpromising trials

As a result:
- Hyperparameter tuning takes less time
- Unified approach to hyperparameter tuning

Collaboration Speed

29

Optuna
● SQL Backend

As a result:
- Parallel experiments on different machines
- Results kept in a database in a unified fashion

Collaboration Speed

30

DVC

● Provides version control after data, pipelines
and models

● Supports S3, Azure, GCP, SSH as a data
storage

● Caches results of the pipeline stages
● Language agnostic

As a result:
- Easy rollbacks and branching
- Single storage for all data
- No recalculations
- Incremental development.

Collaboration SpeedReproducibility

31

32

● Reproducibility
○ Portable environment (virtualenv)
○ VCSs for data, pipelines and models (dvc)

● Collaboration
○ VCSs for code, data, pipelines and models (git and dvc)
○ Standardized templates (cookiecutter)
○ Code quality standards (pre-commit)
○ Shared RDB backend(optuna)

● Experimentation speed
○ Cache pipeline steps (dvc)
○ Smart hyperparameter optimization (optuna)
○ Fast prototyping (jupyter notebooks).

Pipeline tools overview

33

Good software and ML projects today

● Usually in one repo
● Usually well-structured
● Use VCS
● Have well-defined code style

conventions
● Use testing

34

10 minutes after learning about this pipeline

35

10 hours after learning about this pipeline

36

37

My working process

38

My working process

Get &
Understand data

Evaluate Model Prepare Data

Train Model

Repo &
Environment

Implement &
Integrate

Repo & environment

39

$ sudo apt install cookiecutter
$ cookiecutter cookiecutter_repo

$ make initial_setup

Repo &
Environment

What “$ make initial_setup” does

40

- Sets up git
- Creates a fresh virtualenv for a project
- Installs and sets up dvc
- Installs pre-commit
- Installs requirements.txt

Automate setup with Makefile 💡🐱
https://github.com/vasinkd/cookiecutter-data-science

Repo &
Environment

EDA

41

Get &
Understand data

 python my_study/data/train_test_val_split.py
 my_study/data/train_test_val_split.ini
 data/raw/raw_data.tsv data/interim/dataset.pkl

 -d my_study/data/train_test_val_split.py
 -d my_study/data/train_test_val_split.ini
 -d data/raw/raw_data.tsv
 -o data/interim/dataset.pkl

$ dvc run my_study/pipelines/split_data.dvc

Model input generation

42

Prepare Data

Inside split_data.dvc

43

- deps
- outs
- cmd
- …

● A lot of repeats
● No deterministic order

Prepare Data

DVC tip #1

44

● Automate dvc-stage creation 💡🐱

f(stage_name, py_file, inps, outs, ...) -> “dvc_command”
f2(dvc_command) -> $ cd base_dir; dvc_command

As a result:
● Less typos
● Simpler maintenance

Prepare Data

DVC’s dirty secret

45

- No recalculations
- Incremental development

Writes results of each stage on
disk and calculates hash

Problem:
● Not suitable for production

○ Build manually?

Prepare Data

DVC tip #2

46

● Use one featurize.py with different config files 💡🐱

Prepare Data

featurize.py

DVC tip #2

47

● Use one featurize.py with different config files 💡🐱

Prepare Data

featurize.py
Transformer
name¶ms

Input file name

Columns list

DVC tip #3

48

● Create InferenceStage objects as an extra output 💡🐱

Prepare Data

Input
info

Inference
Stage

Raw data

Rationale

49

Prepare Data

Model Input

In memory

Train a family of models

50

● Study
○ Has a name
○ Has user-defined attributes

Train Model

study_id study
name

best trial id important
notes

1 AAAA 252 Felt hungry.
Ordered a
pizza

51

Situation #1

● You want to stop your machine after 50% of the training

Train Model

52

Training tip #1

● Catch SigInt in your train.py 💡🐱

Train Model

53

Situation #2

● You want to resume a stopped
training process

Train Model

Problem:
● How to choose a study name?

○ Unique name for the each
new experiment

○ Name in config?

54

Training tip #2

● Use a hash of all input files as an experiment
name💡🐱

Train Model

55

Situation #2.1

● You want to resume a stopped
training process

Train Model

Problems:
● How to keep the best model?

○ DVC removes outputs before
reproducing

○ Recalculate?

56

Training tip #2.1

● Set --outs-persist as an output type for a model
object💡🐱

Train Model

The best model

study
name

metric

AAAA 0.99

BBBB 0.98

57

Situation #3

● You want to checkout to the point of the most
successful experiment

Train Model

$ git checkout where to?
$ dvc checkout

58

Situation #3
Train Model

commit hash

experiment
name

experiment
result

● You want to checkout to the point of the most
successful experiment

59

Training tip #3

● Tag completed experiments with a
name of an experiment💡🐱

$ git tag -a exp_name -m “exp_name”

Train Model

● Bonus:
$ dvc gc --all-tags

commit
hash

exp_name

60

Situation #4

● You want to use the whole pipeline right after training

Train Model

InferenceStage N

InferenceStage 2

61

Training tip #4

● Create a predictor object using the best model and
Inference stages 💡

Train Model

InferenceStage 1

Predictor

Regularization

???

62

Situation #5

● You doubt how to choose the best pipeline

Train Model

Cross-validation

???

63

Training tip #5

● Measure inference time for a sample and store it as a
study attribute💡

Train Model

M
em

ory usage

Inference time

Implement & Integrate

64

● Write a manager 💡

Implement &
Integrate

Share knowledge about this pipeline

65

66

Additional resources

● #ml_pipeline channel in ODS slack is a fountain of knowledge (ods.ai)
● Check out DVC promo video: you’ll love it (dvc.org)
● Git LFS vs DVC (tiny.cc/git_lfs)
● “I don't like notebooks” - Joel Grus (youtube)

● Tweet from Shekhar Kirani :
https://twitter.com/skirani/status/1149302828420067328

● Tweet from Andrew Ng :
https://twitter.com/andrewyng/status/1080886439380869122

● My cookiecutter template:
https://github.com/vasinkd/cookiecutter-data-science

https://ods.ai/
https://dvc.org/
https://tiny.cc/git_lfs
https://www.youtube.com/watch?v=7jiPeIFXb6U
https://twitter.com/skirani/status/1149302828420067328
https://twitter.com/andrewyng/status/1080886439380869122
https://github.com/vasinkd/cookiecutter-data-science

67

Kirill Vasin

vasin.kd@gmail.com

Contacts

@vasinkd

@vasinkd (ODS Slack)

