

Improving performance of Mission

Critical applications on Linux

#LinuxPiter

Saint Petersburg
3-4 November 2017

Sergey Kachkin

Typical performance problem

#LinuxPiter

 Poor problem description (“everything is slow”)

 Production environment

 No remote access to the machine

 Problem can be constant or intermittent

 Slowness is not reproducible in test environment

Methodology

#LinuxPiter

Methodology

#LinuxPiter

1. Any methodology is good

2. Focus on the application

Linux trace data sources

#LinuxPiter

 Static tracing

 Tracepoints

 User Defined Static Traces (USDT)

 Dynamic tracing

 Kprobes (kprobes,jprobes,kretprobes)

 Uprobes

 PMU

ftrace

#LinuxPiter

 Pros

 Built-in since 2.6.28

 Static and dynamic tracing

 Predefined tracers for some subsystems

 Cons

 No timed based CPU profiling

 No analytics → needs frontend

 Raw ascii data may be difficult to review

perf

#LinuxPiter

 Initially build for PMU counters

 May use static and dynamic trace points

 Works via single CLI command ‘perf’

 Can be used for ftrace and eBPF

perf

#LinuxPiter

 Pros

 Excellent for CPU profiling, system wide or PID

 Backtraces with symbols: user, libraries, kernel,

JIT

 Nice opensource visualisations (flamegraph,

heatmaps)

 Cons

 Difficult to analyze processes cooperation

 Limited analysis features

perf real life example

#LinuxPiter

 NVMe disk subsystem is much slower with LVM

 High system CPU utilization with LVM

 Collected perf CPU profile for ‘good’ and ‘bad’

cases

perf real life example

#LinuxPiter

 Fio benchmark against raw NVMe disks

h perf real life example

#LinuxPiter

 Fio benchmark against NVMe with LVM

Functions
to look at

SystemTAP

#LinuxPiter

 Pros

 Very powerful for user and kernel space tracing

 Many scripts available for common apps

 In-kernel programming

 Good for scientific research & complex debug

 Cons

 Need high expertise to start

 May be risky for production environment

LTTng

#LinuxPiter

 Pros
 Good for monitoring production environments

 Offline and online analysis options

 Several tools for offline visualizations

 Flight recorder mode

 Cons

 No time based CPU sampling

 Third party application with dependencies

 Analytics with slow Python based scripts

eBPF + BCC

#LinuxPiter

 Pros

 Many opensource scripts available

 Python and Lua frontends in BCC

 Safe for production as opposed to stap?

 Cons

 Needs relatively new kernel 4.x

 Needs coding to do simple tasks

 May lose traces under high load

LinuxKI

#LinuxPiter

 Prerequisites

 Kernels 2.6.32 through 4.12.8

 Provided as .deb and .rpm package

 Kernel headers may be needed to compile

 Need root access

LinuxKI design

#LinuxPiter

 LIKI kernel module or ftrace as data source

 Online or offline reports with kiinfo tool

https://github.com/HewlettPackard/LinuxKI

Performance mantra

#LinuxPiter

 If it’s running, what’s it doing?

 If it’s waiting, what’s it waiting on?

LinuxKI real life example

#LinuxPiter

 Oracle is reporting high IO wait times

 Disk subsystem latency is normal

 High system CPU usage

 Collected LinuxKI dump for 20 seconds

LinuxKI real life example

#LinuxPiter

 Generated static report with ‘kiinfo -kipid’

LinuxKI real life example

#LinuxPiter

 Sleep report (off-cpu time)
 What the process is waiting for?

LinuxKI real life example

#LinuxPiter

 Cooperating threads report

LinuxKI real life example

#LinuxPiter

 CPU report (on-cpu profile)
 What the process is doing?

LinuxKI real life example

#LinuxPiter

 Syscalls report

LinuxKI real life example

#LinuxPiter

 Filesystem related syscalls profile

Single 8kb write took 13.9 seconds → looks bad

LinuxKI real life example

#LinuxPiter

 Disk IO activity report

Physical IO is not showing any problem

LinuxKI real life example

#LinuxPiter

So, why Oracle dbw is waiting for kworkers?

Conclusion: kworker suffers from scheduling delays and makes many
barrier writes. The problem is gone after disabling barrier writes.

LinuxKI pros and cons

#LinuxPiter

 Pros

 Easy to collect dump and generate reports

 Portable data

 Very detailed analytic

 In most of cases enough to isolate the problem

 Cons

 Needs installing a kernel module (may work via
ftrace also)

 Root privileges are needed

 Generates a lot of disk IO to save a dump

#LinuxPiter

 Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

