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Typical performance problem 
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 Poor problem description (“everything is slow”)

 Production environment

 No remote access to the machine

 Problem can be constant or intermittent

 Slowness is not reproducible in test environment



Methodology
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Methodology
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1. Any methodology is good

2. Focus on the application



Linux trace data sources

#LinuxPiter

 Static tracing

 Tracepoints

 User Defined Static Traces (USDT)

 Dynamic tracing

 Kprobes (kprobes,jprobes,kretprobes)

 Uprobes 

 PMU



ftrace
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 Pros

 Built-in since 2.6.28  

 Static and dynamic tracing 

 Predefined tracers for some subsystems

 Cons

 No timed based CPU profiling

 No analytics → needs frontend 

 Raw ascii data may be difficult to review



perf
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 Initially build for PMU counters

 May use static and dynamic trace points 

 Works via single CLI command ‘perf’ 

 Can be used for ftrace and eBPF



perf
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 Pros

 Excellent for CPU profiling, system wide or PID

 Backtraces with symbols: user, libraries, kernel, 

JIT 

 Nice opensource visualisations (flamegraph, 

heatmaps)

 Cons

 Difficult to analyze processes cooperation

 Limited analysis features



perf real life example
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 NVMe disk subsystem is much slower with LVM

 High system CPU utilization with LVM 

 Collected perf CPU profile for ‘good’ and ‘bad’ 

cases



perf real life example
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 Fio benchmark against raw NVMe disks 



h perf real life example
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 Fio benchmark against NVMe with LVM 

Functions 
to look at 



SystemTAP
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 Pros

 Very powerful for user and kernel space tracing

 Many scripts available for common apps 

 In-kernel programming 

 Good for scientific research & complex debug

 Cons

 Need high expertise to start

 May be risky for production environment



LTTng
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 Pros 
 Good for monitoring production environments

 Offline and online analysis options

 Several tools for offline visualizations 

 Flight recorder mode  

 Cons

 No time based CPU sampling

 Third party application with dependencies

 Analytics with slow Python based scripts 



eBPF + BCC
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 Pros

 Many opensource scripts available

 Python and Lua frontends in BCC

 Safe for production as opposed to stap?

 Cons

 Needs relatively new kernel 4.x

 Needs coding to do simple tasks

 May lose traces under high load



LinuxKI 
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 Prerequisites 

 Kernels 2.6.32 through 4.12.8

 Provided as .deb and .rpm package

 Kernel headers may be needed to compile

 Need root access 



LinuxKI design
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 LIKI kernel module or ftrace as data source

 Online or offline reports with kiinfo tool

https://github.com/HewlettPackard/LinuxKI



Performance mantra
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 If it’s running, what’s it doing?

 If it’s waiting, what’s it waiting on?



LinuxKI real life example
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 Oracle is reporting high IO wait times

 Disk subsystem latency is normal

 High system CPU usage

 Collected LinuxKI dump for 20 seconds



LinuxKI real life example
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 Generated static report with ‘kiinfo -kipid’



LinuxKI real life example
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 Sleep report (off-cpu time)
 What the process is waiting for? 



LinuxKI real life example
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 Cooperating threads report



LinuxKI real life example
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 CPU report (on-cpu profile)
 What the process is doing? 



LinuxKI real life example
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 Syscalls report



LinuxKI real life example
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 Filesystem related syscalls profile

Single 8kb write took 13.9 seconds → looks bad



LinuxKI real life example
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 Disk IO activity report

Physical IO is not showing any problem 



LinuxKI real life example
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So, why Oracle dbw is waiting for kworkers?

Conclusion: kworker suffers from scheduling delays and makes many 
barrier writes. The problem is gone after disabling barrier writes.



LinuxKI pros and cons
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 Pros

 Easy to collect dump and generate reports

 Portable data 

 Very detailed analytic 

 In most of cases enough to isolate the problem

 Cons

 Needs installing a kernel module (may work via 
ftrace also)

 Root privileges are needed 

 Generates a lot of disk IO to save a dump
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 Questions? 
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