

Improving performance of Mission

Critical applications on Linux

#LinuxPiter

Saint Petersburg
3-4 November 2017

Sergey Kachkin

Typical performance problem

#LinuxPiter

 Poor problem description (“everything is slow”)

 Production environment

 No remote access to the machine

 Problem can be constant or intermittent

 Slowness is not reproducible in test environment

Methodology

#LinuxPiter

Methodology

#LinuxPiter

1. Any methodology is good

2. Focus on the application

Linux trace data sources

#LinuxPiter

 Static tracing

 Tracepoints

 User Defined Static Traces (USDT)

 Dynamic tracing

 Kprobes (kprobes,jprobes,kretprobes)

 Uprobes

 PMU

ftrace

#LinuxPiter

 Pros

 Built-in since 2.6.28

 Static and dynamic tracing

 Predefined tracers for some subsystems

 Cons

 No timed based CPU profiling

 No analytics → needs frontend

 Raw ascii data may be difficult to review

perf

#LinuxPiter

 Initially build for PMU counters

 May use static and dynamic trace points

 Works via single CLI command ‘perf’

 Can be used for ftrace and eBPF

perf

#LinuxPiter

 Pros

 Excellent for CPU profiling, system wide or PID

 Backtraces with symbols: user, libraries, kernel,

JIT

 Nice opensource visualisations (flamegraph,

heatmaps)

 Cons

 Difficult to analyze processes cooperation

 Limited analysis features

perf real life example

#LinuxPiter

 NVMe disk subsystem is much slower with LVM

 High system CPU utilization with LVM

 Collected perf CPU profile for ‘good’ and ‘bad’

cases

perf real life example

#LinuxPiter

 Fio benchmark against raw NVMe disks

h perf real life example

#LinuxPiter

 Fio benchmark against NVMe with LVM

Functions
to look at

SystemTAP

#LinuxPiter

 Pros

 Very powerful for user and kernel space tracing

 Many scripts available for common apps

 In-kernel programming

 Good for scientific research & complex debug

 Cons

 Need high expertise to start

 May be risky for production environment

LTTng

#LinuxPiter

 Pros
 Good for monitoring production environments

 Offline and online analysis options

 Several tools for offline visualizations

 Flight recorder mode

 Cons

 No time based CPU sampling

 Third party application with dependencies

 Analytics with slow Python based scripts

eBPF + BCC

#LinuxPiter

 Pros

 Many opensource scripts available

 Python and Lua frontends in BCC

 Safe for production as opposed to stap?

 Cons

 Needs relatively new kernel 4.x

 Needs coding to do simple tasks

 May lose traces under high load

LinuxKI

#LinuxPiter

 Prerequisites

 Kernels 2.6.32 through 4.12.8

 Provided as .deb and .rpm package

 Kernel headers may be needed to compile

 Need root access

LinuxKI design

#LinuxPiter

 LIKI kernel module or ftrace as data source

 Online or offline reports with kiinfo tool

https://github.com/HewlettPackard/LinuxKI

Performance mantra

#LinuxPiter

 If it’s running, what’s it doing?

 If it’s waiting, what’s it waiting on?

LinuxKI real life example

#LinuxPiter

 Oracle is reporting high IO wait times

 Disk subsystem latency is normal

 High system CPU usage

 Collected LinuxKI dump for 20 seconds

LinuxKI real life example

#LinuxPiter

 Generated static report with ‘kiinfo -kipid’

LinuxKI real life example

#LinuxPiter

 Sleep report (off-cpu time)
 What the process is waiting for?

LinuxKI real life example

#LinuxPiter

 Cooperating threads report

LinuxKI real life example

#LinuxPiter

 CPU report (on-cpu profile)
 What the process is doing?

LinuxKI real life example

#LinuxPiter

 Syscalls report

LinuxKI real life example

#LinuxPiter

 Filesystem related syscalls profile

Single 8kb write took 13.9 seconds → looks bad

LinuxKI real life example

#LinuxPiter

 Disk IO activity report

Physical IO is not showing any problem

LinuxKI real life example

#LinuxPiter

So, why Oracle dbw is waiting for kworkers?

Conclusion: kworker suffers from scheduling delays and makes many
barrier writes. The problem is gone after disabling barrier writes.

LinuxKI pros and cons

#LinuxPiter

 Pros

 Easy to collect dump and generate reports

 Portable data

 Very detailed analytic

 In most of cases enough to isolate the problem

 Cons

 Needs installing a kernel module (may work via
ftrace also)

 Root privileges are needed

 Generates a lot of disk IO to save a dump

#LinuxPiter

 Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

